Unitary representations of the Cherednik algebra: $$V^*$$-homology

نویسندگان

چکیده

We give a non-negative combinatorial formula, in terms of Littlewood-Richardson numbers, for the $$V^*$$ -homology unitary representations cyclotomic rational Cherednik algebra, and as consequence, graded Betti numbers ideals class subspace arrangements arising from reflection complex groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unitary Representations of Rational Cherednik Algebras

We study unitarity of lowest weight irreducible representations of rational Cherednik algebras. We prove several general results, and use them to determine which lowest weight representations are unitary in a number of cases. In particular, in type A, we give a full description of the unitarity locus (justified in Subsection 5.1 and the appendix written by S. Griffeth), and resolve a question b...

متن کامل

Fe b 20 09 Unitary representations of rational Cherednik

We study unitarity of lowest weight irreducible representations of rational Cherednik algebras. We prove several general results, and use them to determine which lowest weight representations are unitary in a number of cases. In particular, in type A, we give a full description of the unitarity locus (justified in Subsection 5.1 and the appendix written by S. Griffeth), and resolve a question b...

متن کامل

On unitary representations of the Virasoro algebra

Some representations π of b of particular interest [2] are the Verma modules (V, π) = (V , π), h, c ǫ R. They are characterized by the following conditions. (i) There is a vector v = vφ 6= 0 in V such that Lnv = 0, n > 0, L0v = hv, Zv = cv. (ii) Let A be the set of sequences of integers k1,≥ k2 ≥ . . . ≥ kr > 0 of arbitrary length, and if α ǫ A let vα = π(L−k1) . . . π(L−kr)vφ. Then {vα|α ǫ A} ...

متن کامل

On unitary representations of the Virasoro algebra*

Some representations π of b of particular interest [2] are the Verma modules (V, π) = (V , π), h, c R. They are characterized by the following conditions. (i) There is a vector v = vφ = 0 in V such that Lnv = 0, n > 0, L0v = hv,Zv = cv. (ii) Let A be the set of sequences of integers k1,≥ k2 ≥ . . . ≥ kr > 0 of arbitrary length, and if α A let vα = π(L−k1) . . . π(L−kr)vφ. Then {vα|α A} is a bas...

متن کامل

Finite Dimensional Representations of the Rational Cherednik Algebra for G4

In this paper, we study representations of the rational Cherednik algebra associated to the complex reflection group G4. In particular, we classify the irreducible finite dimensional representations and compute their characters.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2021

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-021-02746-2